• Certain NP's measure out the event. They are direct objects consumed or created in increments over time (cf. *eat an apple* vs. *push a chart*) (Tenny 1994).

• • = • • = •

- Certain NP's measure out the event. They are direct objects consumed or created in increments over time (cf. *eat an apple* vs. *push a chart*) (Tenny 1994).
- In Mary drank a glass of wine "every part of the glass of wine being drunk corresponds to a part of the drinking event" (Krifka 1992)

向下 イヨト イヨト

- Certain NP's measure out the event. They are direct objects consumed or created in increments over time (cf. *eat an apple* vs. *push a chart*) (Tenny 1994).
- In Mary drank a glass of wine "every part of the glass of wine being drunk corresponds to a part of the drinking event" (Krifka 1992)
- "Incremental themes are arguments that are completely processed only upon termination of the event, i.e., at its end point" (Dowty 1991).

• Verbs with variable aspectual behavior: they seems to be change of state verbs like other achievements , but allow durational adverbs (Dowty 1979, Hay, Kennedy and Levin 1999, Rappaport Hovav 2008).

- Verbs with variable aspectual behavior: they seems to be change of state verbs like other achievements , but allow durational adverbs (Dowty 1979, Hay, Kennedy and Levin 1999, Rappaport Hovav 2008).
- No implication that exactly the same change of state took place over and over again (no semelfactives).

- Verbs with variable aspectual behavior: they seems to be change of state verbs like other achievements , but allow durational adverbs (Dowty 1979, Hay, Kennedy and Levin 1999, Rappaport Hovav 2008).
- No implication that exactly the same change of state took place over and over again (no semelfactives).
- Scalar predicates: verbs which lexically specify a change along a scale inasmuch as they denote an ordered set of values for a property of an event argument (Hay, Kennedy and Levin 1999, Rappaport Hovav 2008).

- Verbs with variable aspectual behavior: they seems to be change of state verbs like other achievements, but allow durational adverbs (Dowty 1979, Hay, Kennedy and Levin 1999, Rappaport Hovav 2008).
- No implication that exactly the same change of state took place over and over again (no semelfactives).
- Scalar predicates: verbs which lexically specify a change along a scale inasmuch as they denote an ordered set of values for a property of an event argument (Hay, Kennedy and Levin 1999, Rappaport Hovav 2008).
- For example cool, age, lenghten, shorten; descend.
- Let the soup <u>cool</u> for 10 minutes.
- I went on working until the soup <u>cooled</u>.

- (17) a. EVENT \rightarrow STATE | PROCESS | TRANSITION
 - b. STATE: $\rightarrow e$
 - c. PROCESS: $\rightarrow e_1 \dots e_n$
 - d. TRANSITION_{ach}: \rightarrow STATE STATE
 - e. TRANSITION_{acc}: \rightarrow PROCESS STATE

回 と く ヨ と く ヨ と …

Opposition Structure Pustejovsky (2000)

臣

Э

Qualia Structure with Opposition Structure

Opposition is Part of Event Structure

Classic GL Event Structure

(20) a. STATE: a simple event, evaluated without referring to other events: be sick, love, know s

b. PROCESS: a sequence of events identifying the same semantic expression: *run, push, drag*

c. TRANSITION: an event identifying a semantic expression evaluated with respect to its opposition: give, open; build: Binary transition (achievement): $\neg \phi \in S_1$, and $\phi \in S_2$

 S_1 S_2

Complex transition (accomplishment): $\neg \phi \in P$, and $\phi \in S$

Dynamic Event Models (Pustejovsky, 2013)

Frame-based Event Structure

2nd Conference on CTF, Pustejovsky (2009)

イロン 不同 とくほど 不同 とう

э

- Events are built up from multiple (stacked) layers of primitive constraints on the individual participants.
- There may be many changes taking place within one atomic event, when viewed at the subatomic level.

• Formulas: ϕ propositions. Evaluated in a state, s.

・ 回 ト ・ ヨ ト ・ ヨ ト

臣

- Formulas: ϕ propositions. Evaluated in a state, s.
- Programs: α, functions from states to states, s × s. Evaluated over a pair of states, (s, s').

- Formulas: ϕ propositions. Evaluated in a state, s.
- Programs: α, functions from states to states, s × s. Evaluated over a pair of states, (s, s').
- Temporal Operators: $\bigcirc \phi$, $\diamondsuit \phi$, $\Box \phi$, $\phi \mathcal{U} \psi$.

• (1) • (2) • (3) • (3) • (3)

- Formulas: ϕ propositions. Evaluated in a state, s.
- Programs: α, functions from states to states, s × s. Evaluated over a pair of states, (s, s').
- Temporal Operators: $\bigcirc \phi$, $\diamondsuit \phi$, $\Box \phi$, $\phi \mathcal{U} \psi$.
- Program composition:

- Formulas: ϕ propositions. Evaluated in a state, s.
- Programs: α, functions from states to states, s × s. Evaluated over a pair of states, (s, s').
- Temporal Operators: $\bigcirc \phi$, $\diamondsuit \phi$, $\Box \phi$, $\phi \mathcal{U} \psi$.
- Program composition:
 - 1. They can be ordered, $\alpha; \beta$ (α is followed by β);

- Formulas: ϕ propositions. Evaluated in a state, s.
- Programs: α, functions from states to states, s × s. Evaluated over a pair of states, (s, s').
- Temporal Operators: $\bigcirc \phi$, $\diamondsuit \phi$, $\Box \phi$, $\phi \mathcal{U} \psi$.
- Program composition:
 - 1. They can be ordered, $\alpha; \beta$ (α is followed by β);
 - 2. They can be iterated, a^* (apply a zero or more times);

- Formulas: ϕ propositions. Evaluated in a state, s.
- Programs: α, functions from states to states, s × s. Evaluated over a pair of states, (s, s').
- Temporal Operators: $\bigcirc \phi$, $\diamondsuit \phi$, $\Box \phi$, $\phi \mathcal{U} \psi$.
- Program composition:
 - 1. They can be ordered, α ; β (α is followed by β);
 - 2. They can be iterated, a^* (apply a zero or more times);
 - 3. They can be disjoined, $\alpha \cup \beta$ (apply either α or β);

- Formulas: ϕ propositions. Evaluated in a state, s.
- Programs: α, functions from states to states, s × s. Evaluated over a pair of states, (s, s').
- Temporal Operators: $\bigcirc \phi$, $\diamondsuit \phi$, $\Box \phi$, $\phi \mathcal{U} \psi$.
- Program composition:
 - 1. They can be ordered, α ; β (α is followed by β);
 - 2. They can be iterated, a^* (apply a zero or more times);
 - 3. They can be disjoined, $\alpha \cup \beta$ (apply either α or β);
 - They can be turned into formulas
 [α]φ (after every execution of α, φ is true);
 (α)φ (there is an execution of α, such that φ is true);

A (1) × A (2) × A (2) ×

- Formulas: ϕ propositions. Evaluated in a state, s.
- Programs: α, functions from states to states, s × s. Evaluated over a pair of states, (s, s').
- Temporal Operators: $\bigcirc \phi$, $\diamondsuit \phi$, $\Box \phi$, $\phi \mathcal{U} \psi$.
- Program composition:
 - 1. They can be ordered, α ; β (α is followed by β);
 - 2. They can be iterated, a^* (apply a zero or more times);
 - 3. They can be disjoined, $\alpha \cup \beta$ (apply either α or β);
 - They can be turned into formulas
 [α]φ (after every execution of α, φ is true);
 (α)φ (there is an execution of α, such that φ is true);
 - 5. Formulas can become programs, ϕ ? (test to see if ϕ is true, and proceed if so).

イロト イボト イヨト イヨト

- (21) a. Mary was sick today.
 - b. My phone was expensive.
 - c. Sam lives in Boston.

> < E > < E >

- (22) a. Mary was sick today.
 - b. My phone was expensive.
 - c. Sam lives in Boston.

We assume that a *state* is defined as a single frame structure (event), containing a proposition, where the frame is temporally indexed, i.e., $e^i \rightarrow \phi$ is interpreted as ϕ holding as true at time *i*. The frame-based representation from Pustejovsky and Moszkowicz (2011) can be given as follows:

Pustejovsky Co-compositionality and Verb Meaning

ヘロン 人間 とくほど くほどう

æ

(30)
$$\left[\phi\right]_{e}^{i} + \left[\phi\right]_{e}^{j} = \left[\phi\right]_{e}^{[ij]}$$

$$(33) \quad \boxed{\phi}_{e}^{i} + \boxed{\phi}_{e}^{j} = \boxed{\phi}_{e}^{[i,j]}$$

Semantic interpretations for these are:

(35)
$$\phi_{e}^{i}$$

$$(36) \quad \boxed{\phi}_{e}^{i} + \boxed{\phi}_{e}^{j} = \boxed{\phi}_{e}^{[i,j]}$$

Semantic interpretations for these are:

(37) a.
$$[\llbracket \phi \rrbracket]_{\mathbf{M},i} = 1$$
 iff $V_{\mathbf{M},i}(\phi) = 1$.
b. $[\llbracket \phi \phi] \rrbracket]_{\mathbf{M},\langle i,j\rangle} = 1$ iff $V_{\mathbf{M},i}(\phi) = 1$ and $V_{\mathbf{M},j}(\phi) = 1$, where $i < j$.

 $e^i \\ | \\ \phi$

Pustejovsky Co-compositionality and Verb Meaning

ヘロン 人間 とくほど くほどう

æ

Tree structure for event concatenation:

回 と く ヨ と く ヨ と …

臣

An LTS consists of a 3-tuple, $\langle S, Act, \rightarrow \rangle$, where

(4回) (4 回) (4 回)

臣

An LTS consists of a 3-tuple, $\langle S, Act, \rightarrow \rangle$, where

- (40) a. S is the set of states;
 - b. Act is a set of actions;
 - c. \rightarrow is a total transition relation: $\rightarrow \subseteq S \times Act \times S$.

向 ト イヨ ト イヨト

An LTS consists of a 3-tuple, $\langle S, Act, \rightarrow \rangle$, where

(42) a. S is the set of states;
b. Act is a set of actions;
c. → is a total transition relation: →⊆ S × Act × S.

(43) $(e_1, \alpha, e_2) \in \rightarrow$

(cf. also Fernando (2001, 2013)

向下 イヨト イヨト

Labeled Transition System (LTS)

An action, α provides the labeling on an arrow, making it explicit what brings about a state-to-state transition.

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ □

Labeled Transition System (LTS)

An action, α provides the labeling on an arrow, making it explicit what brings about a state-to-state transition.

As a shorthand for

Labeled Transition System (LTS)

An action, α provides the labeling on an arrow, making it explicit what brings about a state-to-state transition.

As a shorthand for

(46) a. $(e_1, \alpha, e_2) \in \rightarrow$, we will also use:

伺 ト イヨト イヨト

Labeled Transition System (LTS)

An action, α provides the labeling on an arrow, making it explicit what brings about a state-to-state transition.

As a shorthand for

(47) a. $(e_1, \alpha, e_2) \in \rightarrow$, we will also use:

b. $e_1 \xrightarrow{\alpha} e_3$

Labeled Transition System (LTS)

An action, α provides the labeling on an arrow, making it explicit what brings about a state-to-state transition.

As a shorthand for

(48) a. $(e_1, \alpha, e_2) \in \rightarrow$, we will also use:

b.
$$e_1 \xrightarrow{\alpha} e_3$$

Labeled Transition System (LTS)

If reference to the state content (rather than state name) is required for interpretation purposes, then as shorthand for: $(\{\phi\}_{e_1}, \alpha, \{\neg\phi\}_{e_2}) \in \rightarrow$, we use:

Labeled Transition System (LTS)

If reference to the state content (rather than state name) is required for interpretation purposes, then as shorthand for: $(\{\phi\}_{e_1}, \alpha, \{\neg\phi\}_{e_2}) \in \rightarrow$, we use:

(50)
$$\phi_{e_1} \xrightarrow{\alpha} \phi_{e_2}$$

(51) $x \coloneqq y$ (ν -transition) "x assumes the value given to y in the next state." $\langle \mathcal{M}, (i, i+1), (u, u[x/u(y)]) \rangle \vDash x \coloneqq y$ iff $\langle \mathcal{M}, i, u \rangle \vDash s_1 \land \langle \mathcal{M}, i+1, u[x/u(y)] \rangle \vDash x = y$

• • = • • = •

With a ν -transition defined, a *process* can be viewed as simply an iteration of basic variable assignments and re-assignments:

向下 イヨト イヨト

With a ν -transition defined, a *process* can be viewed as simply an iteration of basic variable assignments and re-assignments:

• 3 >